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An Adaptive Markov Strategy for Defending Smart
Grid False Data Injection From Malicious Attackers

Jianye Hao, Eunsuk Kang, Jun Sun, Zan Wang, Zhaopeng Meng, Xiaohong Li, and Zhong Ming

Abstract—We present a novel defending strategy, adaptive
Markov strategy (AMS), to protect a smart-grid system from
being attacked by unknown attackers with unpredictable and
dynamic behaviors. One significant merit of deploying AMS to
defend the system is that it is theoretically guaranteed to con-
verge to a best response strategy against any stationary attacker,
and converge to a Nash equilibrium (NE) in case of self-play
(the attacker is intelligent enough to use AMS to attack). The
effectiveness of AMS is evaluated by considering the class of the
data integrity attacks in which an attacker manages to inject
false voltage information into the intelligent voltage controller in
a substation. This kind of attack may cause load shedding and
potentially a blackout. We perform extensive simulations using
a number of IEEE standard test cases of different scales (differ-
ent number of buses). Our simulation results indicate that AMS
enables the system to experience much lower amount of load
shedding compared with an NE strategy.

Index Terms—Intrusion detection, agent-based modeling,
learning.

I. INTRODUCTION

ONE OF the foremost critical infrastructures in modern
society today is power grid, and its disruption and

damage could cause potentially severe damages in terms of
economic, environmental and social costs [5], [24]. Therefore,
it has become an appealing target for more and more poten-
tial attackers. One major characteristic of power grid is its
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wide geographical spread and complicated interdependencies
among different components, thus we are faced with a number
of challenges to protect a power grid from physical attacks.
The connection of modern grid systems (aka., smart-grid sys-
tems) to the Internet results in a worsen situation, making itself
vulnerable to a large variety of cyber-attacks.

The attack-defend interactions between system operators
and malicious attackers usually involve deliberate thinking
and also the effectiveness of a defending strategy closely
depends on the current attacking strategy and vice versa. One
simple example would be considering physical attacks on
power lines or substations. The effectiveness of a defending
strategy in terms of which set of lines to protect (or mon-
itor) depends on the attacking strategy adopted in terms of
which set of lines to sabotage. This kind of dependencies also
commonly exist in cyber-attack scenarios such as false data
injection attack detection we focus on in this paper. Besides,
the system states naturally evolve depending on whether the
attacks are successful or not, which is determined by the
attacking and defending strategies implemented. Game the-
ory provides us with a number of candidate game-theoretic
frameworks to model such kinds of system dynamics and ana-
lyze the strategic interactions between attackers and defenders.
Recent years have seen increasing efforts and interests in
adopting game-theoretic frameworks to study the interactions
between attackers and system defenders [15], [19], [20], [23],
and use game-theoretic solutions to devise defending strate-
gies. One commonly used game-theoretic framework is
Markov game [17], where the joint action choices of
the players result in probabilistic transitions between sys-
tem states. Previous work usually computes the Nash
equilibrium (NE) solution of the corresponding Markov game
modeling of the system as the defending solution to smart-grid
attacks [15], [20].

However, the underlying rationale of deploying a NE strat-
egy to defend relies on the crucial assumption of the attacker’s
behavior: the corresponding NE strategy is employed by the
attacker to launch the attack. This assumption is reasonable
for the cases when the attack is an insider attack, in which
the attacker can access all necessary knowledge of the system
beforehand. In practical systems, however, an outside attacker
may have neither sufficient information of the system nor the
necessary computational ability to obtain a Nash equilibrium
strategy. More realistically, as a human being, the attacker
may devise what he/she perceives best for maximizing the
cost to the grid based on his/her personal experience and par-
tial knowledge of the system. Thus, it is very likely that a
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defender may employ a non-NE strategy that he believes to
be effective to launch an attack. In this case, simply adopting
the pre-computed NE strategy as the defending strategy is not
the most effective solution in terms of minimizing the damage
to the grid. In response to this, we are required to have the
capability of estimating the attacker’s behavior and make the
best response in an adaptive manner.

To this end, we propose a novel approach named adap-
tive Markov strategy (AMS) to protect a system from being
attacked by attackers with unpredictable and dynamic behav-
iors. AMS utilizes an online learning approach to dynamically
compute an optimal defending strategy against the currently
estimated behavior of an attacker. We adopt two criteria from
multiagent learning literature: rationality and convergence,
which we believe an effective defending strategy in smart grid
system should satisfy. Through satisfying the above two prop-
erties, a strategy would always converge to a best-response
defending strategy (minimizing the damage) against any sta-
tionary attacker, and also converge to a Nash equilibrium if
the attacker is intelligent enough to adopt the same AMS to
attack. AMS is theoretically provable to satisfy both of the
above criteria.

To illustrate our approach’s effectiveness, we applied AMS
to a class of false voltage information injection attacks in a
grid substation, which may disrupt the distribution system’s
voltage stability and result in load shedding. We first empiri-
cally evaluated the effectiveness of AMS using a representative
distribution system adopted in [15], and then further evaluated
the performance using a number of IEEE standard test cases
of different scales. Our results indicate that AMS can greatly
help to reduce the load shedding cost compared with a NE
strategy. Note that though only one particular type of secu-
rity attacks in the smart grid is considered here, our defending
framework is also applicable to any other types of attacks
given that its underlying dynamics can be formulated as a
Markov game.

The structure of the paper is organized as follows. Section II
describes the false voltage information injection attack in a
smart grid and formalize it as a Markov game. Section III
presents the details of AMS and its theoretical properties, and
follows by the extensive experimental evaluation of AMS in
Section IV. Finally Section V concludes and discusses possible
future work.

II. PROBLEM FORMULATION

A. Threat Model

One critical requirement of a power system is to maintain
its voltage within an acceptable range during its power distri-
bution and transmission process. Unexpected voltage dropping
below the critical level would result in load shedding and even
worse, blackouts. In transmission and distribution systems,
voltages can be controlled by a wide range of devices that
either inject, absorb or redirect reactive power flow. Usually a
merging unit first collects various analog data (such as volt-
age and current levels) from physical sensors, which are then
converted into digital formats. Finally those digital packets are
broadcasted over the process bus. Different types of intelligent

electronic devices (IEDs) are connected to the process bus and
examine any anomalous readings within the packets. If found,
necessary regulatory actions are performed to keep the volt-
age level stable. It is worth noting the difference with local
control devices under which no communication is required.
One commonly adopted intelligent device for voltage regula-
tion is static synchronous compensator (STATCOM), and it
can generate (or absorb) reactive power when the informa-
tion of low (or high) voltage on the lines is received through
communication.

In this work, we focus on one representative type of cyber
attacks in smart-grid distribution systems, which exploits the
above mentioned voltage regulation mechanism. Note that
there also exist other types of false-data injection attacks
exploiting other aspects of weakness of a smart-grid system,
e.g., attack on the control signals of circuit breakers in a sub-
station or undervoltage load shedding relays, which are out
of the scope of this paper. In the following we will describe
the details of this type of attack on active voltage regulators
(e.g., STATCOM) and the corresponding defense mechanisms
we can use [15].

1) Attack: By injecting false voltage data into the process
bus, a voltage regulator can be mislead to make incorrect deci-
sions. This kind of attack can be done in a stealthy manner.
The attack can inject a sequence of packets containing the
voltage information which slightly deviates from the normal
level, which leads to the malfunction of STATCOM with the
attacks remaining undetected. Eventually this may lead to load
shedding or blackout to certain loads in the grid system. This
is similar to the way Stuxnet [11] was carried out to sabotage
Iran’s nuclear control system.

Specifically, given the actual voltage v, the attacker gener-
ates a consequence of packets that represent a voltage value.
Theoretically an attacker could have infinitely number of ways
to manipulate the voltage value, which is infeasible to list
all of them. To make our analysis feasible, we adopt one
basic linear pattern of kv + b, where k and b are constant
factors that are selected by the attacker. We also assume
that there is no noise during transmission. After receiving
the false measurement, A STATCOM controller may make
incorrect decisions by injecting (possibly resulting in over-
voltage) into or absorbing power from the distribution system
(possibly resulting in under-voltage). In linear forms, any pos-
sible value of the false voltage can be obtained by varying
the value of k while keeping the value of b as a constant.
Thus we only need analyze the consequence of the false
voltage information injection by considering different values
of k:

• k < 0: It indicates that the voltage from the reading are
an 180-degree out of phase from the real voltage val-
ues, i.e., the falsified voltage value and the true voltage
value would always be in opposite sign. Thus it may
cause the STATCOM to inject power when it should
be absorbed, while absorb power when it should be
injected.

• k = 0: The STATCOM will consistently receive a reading
of b, falsely believing that the voltage level is stable and
performing no regulatory actions.
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• 0 < k < 1: The STATCOM will receive a decreased
version of the actual voltage values, thus the STATCOM
may apply only partial regulatory actions.

• k >= 1: The STATCOM will receive a false amplification
of the actual voltage values, thus the STATCOM may
inject or absorb more reactive power than needed.

When an attack selects which value of k should be used, the
following two factors are usually under consideration: (1) the
system should be disturbed enough to lead to a load shedding,
and (2) the attack should be stealthy enough to be undetected.
Obviously setting the value of k too large or too small are
more vulnerable to be easily identified. For example, if the
modified voltage value is larger or smaller than 20% of the
normal voltage level, it would be detected easily by using a
saturation filter. By selecting appropriate value of k, the attack
may successfully bypass the detection and lead to load shed-
ding. The unpredictable feature is reflected from the fact that
an attack may adopt different value of k, which significantly
affect the optimal detection action of the defender. Finally, it
is worth noting that the falsified measurements from attackers
is essentially different from other bad measurements due to
transmission noise, measurement noise or instrument failures.
The noise measurements usually follows certain distribution
predictions and can be overcome by applying state estima-
tion techniques (e.g., Kalman filter). In contrast, the falsified
measurements from attackers cannot be simply treated as the
transmission noise. Another distinction between them is that
falsified data from attackers is usually much more consistent
than other bad data measurements that would trigger wrong
control actions.

2) Defense: One common way of mitigating this class of
cyber attack in traditional networks is resort to encryption
techniques to check whether a packet has been tampered.
However, encryption protection mechanisms may not be fea-
sible due to the limited computational capabilities, strict
timing requirements and high data sampling rates in the smart
grid. Though a number of encryption-based approach have
been proposed for communication and control in smart-grid,
their performance does not seem to fulfill the stringent tim-
ing requirement of the smart grid in practice [10], [26].
A hardware-based encryption mechanism may address these
issues, but they are still not common among IEDs, thus we do
not discuss it in this paper.

In the paper, we consider a false voltage information detec-
tion method based on examining the trend of the current
flow [15]. In more details, given the reference current Iref of
the current regulator and the current flowing I, we keep track
of the number of times that I −Iref deviates from 0, [1, Ch. 5].
If the number of times crossing zero over a certain time period
exceeds certain predefined threshold (frequency variable τ ),
then we may determine that the voltage information we receive
is false (an attack has occurred). The rational behind is that the
difference between I and Iref should always stabilize around
0 under normal operations, and should not vary more than τ

even in environments with dynamic loads [15]. It is also worth
noting that current-based detection can only detect whether
there is currently an attack or not, but cannot prevent an attack
beforehand.

The selection of the appropriate values for τ may closely
depend on how the attacker tampers the voltage information
during its attack. Thus, the challenging task of the defender
is the selection of the optimal value for τ to maximize the
detection success rate in response to the dynamic changes of
the attacker’s strategies. We can see that the strategic inter-
actions between the defender and attacker are repeated and
the right value for τ should be adaptively adjusted each round
depending on the attacker’s behaviors. Given the system’s cur-
rent state (e.g., normal state or state under attack), the system
evolves based on the joint actions of the defender and attack-
ers. The payoff of each player also depends on the joint action
of the players each round. Therefore, it makes Markov game
the perfect candidate to model this kind of strategic interaction
between the defender and attacker, which will be introduced
in the following section.

Finally, when the current voltage meter is detected to have
been compromised, the STATCOM will bring another backup
meter online and take the current meter offline. Certain dis-
infection operation (e.g., refreshing the firmware including
cryptographic keys in the Flash memory) will be done on the
infected meter and it will be used as a backup meter.

B. Markov Games

We consider a Markov game between two players—an
attacker and a defender with a possibly infinite rounds of inter-
actions. Each round both players select an action to perform,
and the system states change according to the joint action
of the players with some probabilities. The payoff that each
player receives depends on the current state and their joint
action. For the attacker, its payoff can be measured by the load
shedding cost incurred on a grid. Conversely, the defender suf-
fers from the same amount of cost, and thus his payoff can be
modeled as the negation of the attacker’s payoff. The Markov
game between the players is zero-sum.

Formally, a two-player zero-sum Markov game can be
represented as a tuple 〈S, N, Ai, Pr, Ri〉:

• S: the set of system states.
• N = {d, a}: the set of players: a defender and an attacker.
• Ai: each player i’s action space, ∀i ∈ N.
• Pr: the probabilistic state transition function. Given a

state s ∈ S and a joint action (d, a), the function
Pr(d, a, s, s′) gives the probability that the system state
changes from s to s′ under the joint action (d, a).

• Ri: each player i’s payoff function. Given a state s ∈
S, a ∈ Aa, and d ∈ Ad, the function Ra(s, d, a) gives
the average payoff of the attacker under state s when
(d, a) is executed. For a zero-sum game, the sum of the
attacker and the defender’s payoffs are always zero, i.e.,
Ra(s, d, a) + Rd(s, d, a) = 0.

Next we model the attacker and defender’s behaviors based
on the informal description in Section II-A. First, the attacker’s
action space can be modeled as follows,

Aa = {k1, k2, . . . , kNa} (1)

where k1, k2, . . . are real numbers and Na denotes the size of
Aa, For each i ≤ Na, ki represents injecting a false packet
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with the voltage level of kiv + b (i.e., the voltage reading is
falsely magnified by a factor of ki). Note that there might exist
other ways of modeling the attacker’s behaviors rather than
the linear model adopted here. However, the Markov game
modeling and the adaptive Markov strategy we will introduce
next section are general and can be applied on as long as Aa

is well-defined.
Similar to the attacker’s actions, the action set of the

defender can be modeled as follows:

Ad = {τ1, τ2, . . . , τNd } (2)

where τ1, τ2, . . . are integer numbers and Nd is the size of AD.
For each j ≤ Nd, τj corresponds to the defender detecting the
false voltage information using the threshold of τj (i.e., the
average frequency that I − Iref crosses 0).

Finally, we define a player’s (defender or attacker) strategy
φ as a function that for each state s, gives a probability dis-
tribution over the actions that the player may execute under
state s.

III. ADAPTIVE PROTECTION

As a defender, we are interested in how the system should
be defended to maximize the detection probability and thus
minimize the amount of damage incurred. We argue that
an effective defending strategy should be adaptive, i.e., it
should be able to learn the attacker’s strategy and dynamically
compute the best response strategy to counter the attacking
strategy. A strategy of an attacker (defender) is defined as
a function which maps each state to a probability distribu-
tion over its action space. It is reasonable to assume that an
attacker may change its strategy from time to time. Specifically
we propose that an effective defending strategy must satisfy
the following two desirable properties [4].

Rationality - A defending strategy is rational if it always
learns towards the best-response strategy as long as the
attacker is employing a fixed attacking strategy. By satisfy-
ing this property, it is guaranteed that the system cost can
be minimized given that the attacker’s strategy is unchanged.
Satisfying this property also requires a strategy to be adap-
tive, i.e., adjusting the defending behaviors according to the
dynamic changes of the attacker’s behavior to ensure that the
best response is achieved eventually.

Convergence - The defending strategy must always con-
verge to a fixed strategy under the case of self-play. This
property considers the cases when the attacker might be suf-
ficiently intelligent to employ the same adaptive strategy as
the defender. It is not difficult to verify that, if both of the
above properties are satisfied, the players would converge to a
NE eventually under self-play. This indicates that we have the
lowest bound on the system’s cost under the case of self-play:
the worst-case cost is equal to that when the attacker adopts
a NE strategy.

A number of learning strategies have been proposed to sat-
isfy some of the above properties in the multiagent learning
literature, however, all of them suffer from either of the fol-
lowing two problems: 1) long learning periods are required
before converging to the best response strategy, thus resulting

in significant losses during learning period and failing to make
timely response [21], [22]; 2) some strategies are designed
for repeated game setting only and also do not satisfy all the
above properties [7], [9], [12], [27]. Thus we cannot directly
apply the existing learning strategies into the malware detec-
tor placement problem. In this paper, we propose an adaptive
Markov strategy (AMS) for Markov games which satisfies all
the above properties.

A. AMS: Adaptive Markov Strategy

We start with introducing the definitions of a few terms
necessary for describing the AMS algorithm. First, given any
two strategies, we need a criterion of distance to check whether
they are the same or not, which is defined as follows.

Definition 1: Given two strategies φ and φ′, the distance
Distance(φ, φ′) between them is:

Distance(φ, φ′) = max |φ(s, a) − φ′(s, a)|,∀a ∈ As, s ∈ S

(3)

where As denotes the action space at state s, S represents the
set of states, and φ(s, a) and φ′(s, a) denotes the respective
probability of selecting action a at state s following strategy
φ and φ′.

Second, we define the value V(s, φ1, φ2) of playing strategy
φ1 against strategy φ2 under state s, This value is calculated
as the sum of the discounted expected payoff obtained over
an infinite number of rounds.

Definition 2: The value V(s, φ1, φ2) of employing strategy
φ1 against strategy φ2 under state s is defined as follows,

V(s, φ1, φ2) = R(s, φ1(s), φ2(s))

+ δ
∑

s∈S

Pr
(
φ1(s), φ2(s), s, s′)V

(
s′, φ1, φ2

)

(4)

Here 0 ≤ δ ≤ 1 denotes the discounting factor indicating
the weight of future payoffs and Pr(φ1(s), φ2(s), s, s′) is the
system state transition probability from s to s′ given that action
φ1(s) and φ2(s) are chosen by the players. For each state s ∈ S,
its V-value corresponds to one equation following Definition 2.
Thus, we can obtain the value of each state by computing
the system of |S| linear equations using techniques such as
iterative methods [8].

The overall AMS algorithm is shown in Algorithm 1, and
the list of symbols used in AMS is summarized in Table I.
Initially, the AMS starts by selecting the precomputed NE
strategy as the defending strategy for an initial period of
rounds (Line 5). The strategy of the attacker can be esti-
mated from the history of attack, which is computed as
the frequency of actions taken by the attacker during this
period (Line 7 to 10). Next AMS checks whether the dis-
tance between the estimated strategy hcurr

a of the attacker and
its NE strategy π∗

a is larger than the given threshold (line 13).
If yes, AMS assumes that the attacker is following a non-NE
attacking strategy, and then a random strategy is chosen as the
defending strategy for the next period (Line 17).

After the second period terminates, AMS calculates the
best-response strategy φ′

d against the attacker’s estimated
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Algorithm 1 Description of AMS
1: Compute a NE strategy (π∗

i , ∀i ∈ {d, a})
2: repeat
3: Initialize hprev

a , hcurr
a to nil

4: s = s0, β = false, t = 0
5: Set defender strategy φd as NE strategy (φd = π∗

d )
6: while true do
7: for r : 0 to Nt do
8: Play(φd(s))
9: Update(hcurr

a )
10: end for
11: hprev

a = hcurr
a

12: t := t + 1
13: if Distance(hcurr

a , π∗
a ) > εt

e then
14: break
15: end if
16: end while
17: φd = RandomStrategy()
18: while true do
19: for r : 0 to Nt do
20: Play(φd(s))
21: Update(hcurr

a , hprev
a )

22: end for
23: t := t + 1
24: if β = true then
25: if Distance(hcurr

a , hprev
a ) > εt

s or Distance(hcurr
self , hprev

self )
> εt

s then
26: break
27: end if
28: end if
29: hprev

a = hcurr
a

30: β := true
31: φ′

d := BestResponseStrategy(hcurr
a )

32: if V(s, φ′
d, hcurr

a ) > V(s, φd, hcurr
a ) + 2|A||S|εt+1

s μ(s),
∀s ∈ S then

33: φd = φ′
d

34: end if
35: end while
36: until the end of detection

TABLE I
LIST OF SYMBOLS IN THE AMS

strategy hcurr
a based on the second period’s interaction history

(Line 31). If the difference between the V-value of φ′
d against

hcurr
a (see Definition 2) and the V-value of φd against hcurr

a
(∀s ∈ S) is larger than the threshold 2|A||S|εt+1

s μ(s), AMS
replaces the current defending strategy φd by strategy φ′

d
(Line 32-34). Note that |A||S| represents the total number of
pure strategies of the Markov game and μ(s) denotes the
payoff difference between the defender’s best and worse out-
comes. Therefore the overall value of 2|A||S|εt+1

s μ(s) thus

reflects the upper threshold for the V-value difference between
V(s, φ′

d, hcurr
a ) and V(s, φd, hcurr

a ) when the distance between
hcurr

a and hprev
a is within εt+1

s .
The same checking procedure is repeated for the following

periods. Besides, AMS also evaluates whether the attacker is
employing the same strategy starting from the end of the third
period. Specifically AMS compares the distance between the
estimated strategy hcurr

a and hprev
a of the attacker (Line 25): if

their distance exceeds the threshold εt
s, then AMS assumes that

the attacker is not following the strategy hprev
a as we predicted,

thus AMS will restart to the beginning of itself (break from
Line 26). Otherwise, AMS recomputes its best response strat-
egy φ′

d against hcurr
a , and resort to strategy φ′

d if it is better
than φd (Line 31-34).

The set of parameters of the AMS algorithm should be
adjusted in a valid manner to ensure its convergence property,
which is described as follows.

Definition 3: A schedule of adjusting the parameters
{εt

e, ε
t
s, Nt} is valid if

• εt
e, ε

t
s are decreased monotonically and converge to zero

eventually.
• the value of Nt is increased monotonically to infinity.
• �t∈{1,2,...}(1 − AS

1
Nt(εt+1

s )2
) > 0, where AS is the total

number of actions of the defender summed over all states.
Since we model the interaction between attacker and

defender as a zero-sum game (the sum of the attacker
and defender’s payoffs is always 0), calculating its Nash
equilibrium strategy can be transformed into computing its
maxmin/minmax strategy of the Markov game [25]. Therefore,
the complexity of computing its Nash equilibrium of a Markov
game can be reduced to be polynomial in the size of the
Markov game (its states and action space). One common
approach of computing the maxmin/minmax strategy of a
Markov game is based on the extension of Shapley’s value
iteration algorithm [25], which is omitted due to space limita-
tion. We also remark that both agents are assumed to compute
the same Nash equilibrium under the case of self-play (both
agents use AMS strategy). Finally, given the estimated strategy
of the attacker, we can calculate the best-response strategy for
the defender based on the generalization of the value iteration
technique [25] as follows.

We first define the Q-value Qd(s, d, a) of the defender as its
expected long-term value starting at state s by choosing action
d (the attacker chooses action a), and the attacker and defender
choose its estimated strategy φa and the best-response strategy
against the estimated strategy of the attacker thereafter. This
can be formally represented as follows,

Qd(s, d, a) = Rd(s, d, a) + δ
∑

s′∈S

Pr
(
s, d, a, s′)V ′

d

(
s′) (5)

which V ′
d(s

′) is the long-term expected payoff of the defender
if the attacker and defender choose its estimated strategy φa

and the best-response strategy against the attacker respectively.
The value of V ′

d(s) for any state s can be defined based on
Qd(s, a, d) as follows,

V ′
d(s) = max

φd(s)∈�(Ad)

∑

d∈Ad

⎛

⎝
∑

a∈Aa

Qd(s, d, a)φa(s, a)

⎞

⎠φd(s, d)

(6)
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where �(Ad) is the set of all the probability distributions
(mixed strategies) over the action set Ad of the defender.

Based on the generalization of the value iteration tech-
nique [25], we can obtain the best-response strategy for the
defenderagainst theestimatedstrategyof theattackerbyupdating
the V-values and Q-values repeatedly until convergence.

B. Properties of the AMS

We propose that an effective defending strategy should at
least satisfy the following two properties: rationality and con-
vergence. As shown in the following theorems, AMS satisfies
both of them. We omit the proofs due to space limitation.

Theorem 1: Given a valid schedule of adjusting the param-
eters, if the attacker’s strategy is fixed, with probability one,
AMS will eventually converge to a best response strategy to
the attacker’s strategy.

Proof: We prove this theorem by dividing it into two parts.
First, we prove that with a non-zero probability, the AMS
strategy never restarts. Second, we prove that the probability
that the AMS strategy never restarts and does not converge to
a best-response strategy against the attacker is 0. By proving
both parts, we can reach the conclusion that the AMS strategy
will converge to a best-response strategy against the attacker
with probability 1.

From Algorithm 1, we know that the AMS strategy restarts
if and only if the second break statement is executed, at certain
period t; that is, either condition 1) Distance(hcurr

a , hpref
a ) > εt

s

or condition 2) Distance(hcurr
self , hpref

self ) > εt
s is satisfied. For

condition 1), based on the triangle inequality and the fact the
εt

s is decreasing, we know that

Distance
(
hcurr

a , hprev
a

)
> εt

s =⇒ Distance
(
hcurr

a , ha
)

+ Distance
(
hprev

a , ha
)

> εt
s =⇒ Distance

(
hcurr

a , ha
)

>
εt

s

2
∨ Distance

(
hprev

a , ha
)

>
εt

s

2
=⇒ Distance

(
hcurr

a , ha
)

>
εt+1

s

2
∨ Distance

(
hprev

a , ha
)

>
εt

s

2

Thus, we only need to prove that with a positive probability,
for all period t, the following is true: Distance(hcurr

a , ha) ≤
εt+1

s
2 .

The probability P that Distance(hcurr
a , ha) ≤ εt+1

s
2 ,∀t can be

represented as �t∈{1,2,...}(1 − Pr(Distance(ht
a, ha) >

εt+1
s
2 )),

which is greater than

P′ = �t∈{1,2,...}

⎛

⎝1 −
∑

s∈S

∑

a∈Aa

Pr

(∣∣ht
a(s, a) − ha(s, a)

∣∣

>
εt+1

s

2

)⎞

⎠

Since E(ht
a(s, a)) = ha(s, a), and observing that

Var(ht
a(s, a)) ≤ 1

4Nt , by applying Chebyshev’s inequal-
ity theorem [3], we can reach the conclusion that

P′ > �t∈{1,2,...}(1 − AS
1

Nt(εt+1
s )2

), where AS is the total

number of actions summed over all states. Since this is
always greater than 0 for a valid schedule, we can say that
with a positive probability, the first condition will never be
satisfied.

Next we prove that the second condition will also never
be reached with a positive probability. First, we know that
when the AMS algorithm reaches the second while-loop, there
is probability 1

|A||S| that the AMS chooses a strategy which
is the best-response strategy to the stationary strategy of the
opponent (a random strategy is selected). We only need to
show that the AMS will never change its strategy once this
best-response strategy is selected, which is guaranteed by the
upper threshold we use (2|A||S|εt+1

s μ(s)) for comparing the
difference between V(s, φ′

d, hcurr
a ) and V(s, φd, hcurr

a ). Thus we
can state that with a positive probability, the AMS strategy will
never restart.

The second part is to prove that the probability that the AMS
strategy never restarts but never converges to the best-response
strategy is 0. There are two possible conditions under which
this might happen. The first condition is that the AMS strategy
always stays in the first while-loop (Line 6-16). In this case,
it is impossible that the opponent is playing its corresponding
Nash equilibrium strategy, since the AMS strategy would be
playing the best-response strategy otherwise. Let us denote
the actual strategy of the attacker as φa, its Nash equilibrium
strategy as φ∗

a , and its current estimated strategy in period t
is φt

a. Given a state s and an action a, let us denote d =
|φa(s, a)−φ∗

a (s, a)|. From Chebyshev’s inequality theorem, we
know that Pr(|φt

a(s, a)−φa(s, a)| < d
2 ) ≥ 1− 1

Ntd2 , which goes
to 1 as t goes to infinity. Also since εt will become less than
d
2 eventually, we can have that |φt

a(s, a) − φa(s, a)| < d
2 =⇒

|φt
a(s, a) − φ∗

a (s, a)| > d
2 =⇒ |φt

a(s, a) − φ∗
a (s, a)| > εt

e.
This implies that the AMS strategy will execute the break
(Line 14) command and jump out of the while-loop (Line 6-16)
eventually.

The second condition is that the AMS strategy always stays
in the second while-loop (Line 18-35), but the AMS strat-
egy is not playing the best response to the attacker’s strategy.
In this case, we only need to prove that the AMS strategy
will eventually switch its strategy to the best-response one
with probability 1. If the payoff of playing a pure strategy φ1
against the attacker’s true strategy φa is k less than that of
playing another strategy φ2, then by continuity, for some ε,
for any strategy φ′

a that is within the distance of ε of the true
strategy of the attacker φa, the payoff obtained by playing
φ1 against φ′

a should be at least k
2 less than that of play-

ing φ2. Similar to the proof in the first condition, we know
that Pr(Distance(φt

a, φa) < ε) → 1 as t goes to infinity. Also
we know that 2|A||S|εt+1

s μ will become smaller than k
2 even-

tually with probability 1. Thus we can have the conclusion
that the AMS agent will switch its strategy eventually with
probability 1.

Theorem 2: Given a valid schedule, under the case of self-
play, the defender and attacker eventually converge to a Nash
equilibrium with probability 1.

Proof: We prove this theorem by dividing it into two parts.
First, we prove that with a positive probability, the AMSs for
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both players will never restart and are always within the first
while-loop. Second, we need to prove is that the probability
that the AMS strategy never restarts but does not converge to
equilibrium strategy is zero.

For the first part, we only need to prove that the AMSs can
always stay in the first while-loop for all periods t with positive
probability. This is in equivalent to prove the following state-
ment: there is positive probability that Distance(ht

a, π
∗
a ) > εt

e
is always false for all periods t, which is similar to the first part
proof in Theorem 1, and can be proved using the Chebyshev’s
inequality theorem in a similar manner.

Secondly, we need to prove is that the probability that the
AMS strategy never restarts but does not converge to equi-
librium strategy is zero. In this case, the AMS strategy must
be within the second while-loop, and not playing the best-
response to each other. Thus similar to the proof in the second
part of Theorem 1, we only need to show that one player
(either attacker or defender) adopting the AMS will eventu-
ally switch its strategy since at least one player’s strategy is
not the best-response strategy to its opponent. Also since an
AMS agent is always synchronized with its opponent under
self-play (Line 25), the strategy deviation of one AMS agent
would trigger both AMS players to restart. Thus it leads to a
contradiction.

By combining both parts, we can conclude that the defender
and attacker will eventually converge to an NE with probability
one if both of them adopt the AMS.

C. Discussion on Convergence Time

In previous section, we have shown that the AMS is theoret-
ically guaranteed to converge to the best-response strategy if
the attacker employs a stationary strategy, and a NE strategy if
the attacker also employs the same AMS. Intuitively the num-
ber of interactions required before convergence is increased as
the action and state space are increased. Thus it is expected
that the convergence time would also be increased given that
the interaction frequency (attacking frequency) is unchanged.
However the practical performance of the AMS is not signif-
icantly sacrificed before converging to the best response due
to the following observations:

• the initial NE defending strategy can be precomputed
before the AMS is deployed on the system, thus does
not violate the real-time protection requirement of the
system. By initially adopting NE defending strategy, the
defender can avoid being exploited when the attacker’s
strategy is unknown. Specifically for any time when the
attacker’s strategy is not equal to (deviates from) the NE
strategy we expect, based on the definition of NE, we
know that its payoff under each state is always lower
than that obtained by choosing the NE strategy. Since the
game itself is also zero-sum, we can see that the actual
long-term payoff of the defender is always higher than
that obtained when both players choose the NE strategy
(the lower bound).

• in AMS, the strategy only needs to be updated at the end
of a period of rounds and the length of each period is
also gradually increased. The calculation of best-response

strategy can be done during the last few interactions dur-
ing each period to ensure it is ready when it is needed,
which thereby does not violate the real-time requirement
of the system.

Finally, we remark on the behaviors of AMS when it
encounters an adaptive attacker, which can change its strategy
dynamically. Theorem 1 and 2 only characterizes the behav-
iors of AMS when it is against a fixed-strategy attacker and
an AMS attacker respectively. However the AMS strategy also
works when the attacker can dynamically change its strategy.
Without loss of generality, let us assume that the attacker
adopts strategy φ1 for certain periods and then change to
another strategy φ2. Following the description of AMS, we can
verify that the AMS first converges to the best response against
φ1, and also continue detecting whether the attacker is still fol-
lowing the same strategy at the end of each period. After the
attacker switches to strategy φ2 which has been detected, the
AMS will restart by learning from scratch until converging to
the best response towards φ2. In Section IV, we will consider
a case where the attacker can dynamically change its strategy
and evaluate the performance of the AMS against it to sup-
port this claim. It is worth noting that the time between the
attacker’s strategy change should be sufficient for the AMS to
learn towards a best response. Otherwise, it would be equiva-
lent as the attacker is adopting a random strategy, from which
no useful defending strategy can be learned and deployed.

IV. EXPERIMENTAL EVALUATION

We present the evaluation results of AMS for defending
power distribution systems against false data injection attacks
compared with NE strategy under a number of test cases with
increasing sizes. Unless mentioned otherwise, the initial period
length N0 is set to 500 rounds and is increased by 10 per
period. The value of εt

e and εt
s are decreased by 50% at the

end of each period.

A. One-Generator Four-Bus Distribution System

In the distribution system in Figure 1, one generator pro-
vides power to four loads (L0-L3), and a STATCOM con-
necting to the system through Bus 3 (B3) is in charge of
regulating the voltage levels of the system. The STATCOM
executes the detection algorithm every 0.5 seconds until an
anomaly is detected. The regulation is done through injecting
(or absorbing) reactive power to (from) the system based on
the voltage feedback sent from merging units. Note that we
assume that the STATCOM is the only device to regulate the
voltage level near the load side, and other components may
also adjust the voltage level of other parts of the power net-
work (e.g., near the generator side), which is out of the scope
of our setting. If the voltage near the bus 2 or 4 drops below
certain threshold, the corresponding under voltage load shed-
ding (UVLS) relay would shed the corresponding load. The
specific rules adopted in this testbed is as follows [16].

• if voltage VB4 < 0.94 p.u. for 0.4 s, then shed load L1;
• if voltage VB4 < 0.92 p.u. for 0.3 s, then shed load L2;
• if voltage VB4 < 0.90 p.u. for 0.2 s, then shed load L3;
• if voltage VB2 < 0.90 p.u. for 0.4 s, then shed load L0.
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Fig. 1. An example distribution system [15], originally from the D-STATCOM model in SimPowerSystems [2].

Here p.u. is short for per unit and is calculated as the ratio of
the absolute voltage value to the reference voltage value.

1) Markov Game: Since the construction of the Markov
game is not our focus here, we only give the specific
instance of the Markov model for our study obtained from
Matlab/Simulink simulation and interested readers may refer
to [15]. Note that the Markov game itself is a discrete abstrac-
tion of the continuous dynamics of interactions. The state
transitions can be considered as the snapshots of the system
states which capture the key moments of the system. The
payoffs and transition probabilities in the Markov game are
obtained from real-time simulation on the testbed system using
Matlab/Simulink. Specifically, the transition probability from
state s1 to s2 under a joint action (a1, d1) is determined as
the empirical frequency of the system transiting from state s1
to s2 after (a1, d1) is performed. The payoff of the attacker
under state s1 and a joint action (a1, d1) is determined as the
average load shedding cost over the session time starting from
state s1 given the attacker and defender’s actions are fixed as
a1 and d1.

We abstract the system’s state space into two states, S =
{s1, s2}, where s1 and s2 correspond to the cases when the
system suffers from (1) zero load shedding, and (2) certain
amount of load shedding, respectively. In general, there is an
infinite number of actions available for both the defender and
attacker. However, in practice, to make the analysis feasible,
we adopt the empirical game-theoretic analysis approach [18]
here, assuming that both players would choose actions from a
finite set of actions.

The attacker’s action set is represented as Aa = {k1 =
−0.8, k2 = 1.1}, which are the false voltage values that
the attacker may choose to modify and send back to the
STATCOM. The reason why we choose the above values as
the attacker’s actions is that they are the most stealthy (i.e., the
thresholds to distinguish the attacking actions are close to the
threshold of being normal) and effective actions in triggering a
load shedding (i.e., both actions can successfully trigger load
shedding) obtained from the Simulink simulation results [15].

The defender’s action set Ad consists of the following
actions, Ad = {τ1 = 11, τ2 = 32}, which represent the two
thresholds that the defender employs to detect an injection
attack. These two values correspond to the number of zero-
crossings per 0.5 seconds for the normal case and the case
of k = 1.1 respectively based on Matlab/Simulink simula-
tion. We omit the unnecessary details of action selections and
interested readers may refer to [15]. Different actions of the

attacker result in different optimal actions for the defender
to detect the attack. For example, intuitively, if the attacker’s
action is k = 1.1, the best action for the defender would
be 11 to avoid high false-negative; on the other hand, if the
attacker chooses the action of −0.8, it is better for the defender
to switch to the action of 32 to avoid high false-positive.
Thus the optimal strategy of the defender closely depends on
the strategy taken by the attacker. This kind of dependency
can be observed from the payoff matrix under state s1 we
give next.

From the Simulink simulation results, the average payoff of
the attacker/defender under state s and joint action (aa, ad)

is calculated as the expected amount of load shedding by
executing (aa, ad) under state s, which is given as follows,

Rd(s1) =
∣∣∣∣
−44/46 0
−42/49 −24/33

∣∣∣∣Rd(s2) =
∣∣∣∣
−2 −2.50
−2 −2.15

∣∣∣∣

Note that the defender’s average reward (cost) includes
the expected cost of meter switching process under false-
positive, which is equivalent to the switching cost per time
times the false-positive probability. Since it is a zero-sum
game, the attacker’s payoffs are exactly the negation of
those for the defender and are omitted here. Besides, by
verifying the defender’s payoff matrix under state s1, we
can easily observe that Rd(s1)(τ2, k1) > Rd(s1)(τ1, k1) and
Rd(s1)(τ1, k2) > Rd(s1)(τ2, k2), which is consistent with the
intuition we previously described.

The transition probabilities between states under each joint
action are given as follows,

Pr(d1, a1) =
∣∣∣∣
43/45 2/45

1/2 1/2

∣∣∣∣Pr(d2, a1) =
∣∣∣∣

0 1
1/47 46/47

∣∣∣∣

Pr(d1, a2) =
∣∣∣∣
48/49 1/49

0 1

∣∣∣∣Pr(d2, a2) =
∣∣∣∣
25/32 7/32
7/17 10/17

∣∣∣∣

Finally we remark that the system dynamics is continuous
and the Markov game modeling here can be considered as
the snapshot of the system dynamics when the defender and
attacker make decisions.

2) Simulation Results: To evaluate the performance of
AMS, we compare its performance against different attacker’s
strategies with a NE defending strategy. In each scenario,
we ran a simulation of playing the Markov game for 5000
rounds, and measured the average load shedding costs when
the defender employs AMS and NE strategy respectively.

a) Performance against different stationary opponents:
Figure 2a shows the average load shedding costs when the
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Fig. 2. The average load shedding cost when the attacker uses different attacking strategies.

Fig. 3. (a)-(b): The average load shedding cost when the attacker uses different attacking strategies; (c)-(d): 9-bus and 14-bus testbed distribution systems.

attacker employs the NE strategy and the defender chooses
the NE and AMS as the defending strategy respectively. It
can be observed that both strategies result in approximately
the same amount of load shedding. Intuitively, after recog-
nizing that the attacker is employing the NE strategy, AMS
learns to choose its corresponding (optimal) NE strategy as
the defending strategy. Also we can notice that no learning
period is required for the AMS defending strategy, which is
able to learn to use the NE strategy to defend immediately.

Figure 2b shows the expected cost of load shedding
when the attacker chooses strategy φ1 (i.e., always choosing
action a1), and the defender employs the NE and AMS as
its defending strategy respectively. It shows that the system’s
average load shedding cost is significantly reduced when AMS
is deployed. Intuitively speaking, when the AMS realizes that
the attacker employs a strategy different from the NE strategy,
it will compute the corresponding best-response strategy that
exploits the attack pattern, and thus the load shedding cost
can be minimized. Similarly, if the attacker uses strategy φ2
where a2 is always selected (Figure 2c), the AMS computes
the corresponding optimal strategy that significantly reduces
the load shedding cost than the NE strategy. Besides, we notice
that there is a temporary drop-off around the 500th round in
Figure 2c. This is due to the fact that the AMS strategy deter-
mines the best-response defending strategy based on which
strategy it believes the attacker is currently employing. Thus
at the beginning before the AMS can obtain an accurate esti-
mation of the attacker’s strategy, it may temporarily resort to
a strategy which turns out to be less than optimal.

Figure 2d illustrates the dynamic change of the expected
load shedding costs when the attacker uses another strategy φ3
under which the two actions, a1 and a2 are randomly selected
under each state. Similar to the results in Figure 2b, AMS ini-
tially results in a slightly higher cost, however, as its estimation

of the attacker’s strategy becomes more accurate and stabilized
(around the 1500th round), it significantly outperforms the NE
strategy thereafter since AMS is the best-response defending
strategy against the attacker’s strategy.

Finally we evaluate a scenario when the attacker may alter-
nate between different strategies during the attack. Figure 3a
illustrates the average load shedding cost for the case when
the attacker first employs the strategy φ2 and switches to
another strategy φ1 in the middle of the attack (around 2500
round). It can be observed that most of the times, the AMS
can intelligently adjust its defending action and fully exploit
the attacker’s dynamic behaviors to greatly decrease the load
shedding cost than the NE strategy.

b) Performance under self-play: In this section, we con-
sider the case when the attacker is sufficiently intelligent to
employ the same AMS strategy to launch the attack. We have
theoretically proved that the players are guaranteed to converge
to the Nash equilibrium under self-play. Here we empiri-
cally evaluate the performance of the AMS strategy when the
attacker also adopts the AMS strategy comparing with the case
of adopting a NE strategy to defend.

Figure 3b illustrates the average load shedding costs when
the attacker employs the AMS strategy and the defender
employs AMS and a NE strategy to defend respectively. It
shows that AMS can achieve the same performance as the NE
strategy. The reason can be explained as follows. When the
attacker adopts AMS, the players always converge to Nash
equilibrium no matter whether the defender employs AMS
or a NE strategy. This indicates that a defender employing
AMS can successfully avoid being exploited by an intelligent
attacker, since the worse-case damage to the grid is the same
as the damage when the attacker employs the NE strategy.

c) Influence of the action space: In this section, we
investigate the influence of the action space on the learning
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Fig. 4. Average Convergence Time (in Rounds).

performance of the AMS. We consider the following two cases
with the number of actions for both players increased from two
to three and four respectively.

The attacker’s action sets are denoted by Aa = {k1 =
1.1, k2 = −0.8, k3 = −1.2} and A′

a = {k1 = 1.1, k2 =
−0.8, k3 = −1.2, k4 = 1.2} These values represents the false
voltage values that the attacker can choose to modify the volt-
age and send back to the STATCOM, and are selected based on
the Simulink simulation results. The defender’s corresponding
action sets are represented by Ad = {τ1 = 11, τ2 = 32, τ3 =
148} and A′

d = {τ1 = 11, τ2 = 13, τ3 = 32, τ4 = 148} which
correspond to the set of thresholds the defender can employ
to detect the attack, obtained from the Simulink simulation.

Figure 4 lists the average convergence times of the AMS
against different types of attacker’s strategies in rounds when
the number of actions varies from two to four. For the
attacker’s strategies, strategy II - V are constructed as follows
for all cases. First we randomly select two distinct actions a1
and a2, and then construct the strategies as follows: II) always
choosing a1; III) always choosing a2; IV) choosing each action
randomly; V) choosing a1 under s1 and a2 under s2. For all
cases, the unselected actions are chosen with a small probabil-
ity to model the noise of the environment. From Figure 4, we
can observe that the average convergence time is increased
with the increase of the action space of the players. This
is expected since more rounds of interaction experience is
needed before obtaining a sufficiently accurate estimation of
the opponent’s strategy. Thus the average time (in rounds)
required before convergence to the optimal best-response strat-
egy is increased accordingly. For the cases in Figure 2a and
Figure 3b, since the AMS agent always employs the precom-
puted NE strategy as the initial strategy, its behavior is always
optimal (best response) starting from the beginning against
opponents adopting either the corresponding NE strategy or
the AMS. Therefore, the time needed before converging to
the best response is always zero.

B. 9-Bus and 14-Bus Distribution Systems

In this section, we consider two more complex distribution
systems: the 9-bus system (Figure 3c) [14] and the 14-bus
system (Figure 3d) [6] to further evaluate the effectiveness
and scalability of the AMS. For the 9-bus distribution system,
there are three generators and three loads; for the 14-bus sys-
tem, there are two generators and ten loads. For both systems,
similar to the testbed system in Figure 1, we assume that there

TABLE II
AVERAGE CONVERGENCE TIME (IN ROUNDS)

is one STATCOM connected to the system through Bus 8 to
regulate the system’s voltage level, while the attacker can com-
promise the merging unit and send false voltage data back to
the STATCOM.

Similar to what we did in previous section, we abstract the
system’s state space into two states, S = {s1, s2}, represent-
ing the conditions when the system suffers from zero load
shedding and certain amount of load shedding. Regarding the
defender and attacker’s actions, we first perform Simulink sim-
ulation to investigate whether load shedding happens and the
number of times that I−Iref crossing zero for different actions
of the attacker. Based on the Simulink results, we select two
most stealth and effective actions as the attacker’s action set
for the 9-bus and 14-bus systems as follows.

The attacker’s action set consists of the following actions,

Aa = {k1 = 2.1/1.7, k2 = −1.3/ − 1.8},
which denote the two false voltage values that the attacker
may choose to inject into the STATCOM for the 9-bus and
14-bus systems respectively.

Given the attacker’s action set, the defender’s corresponding
action set consists of the most effective thresholds to detect
the stealthy attack from Aa, which is represented as Ad =
{τ1 = 13/18, τ2 = 35/43}. These values are the thresholds
the defender can use to detect injection attacks for the 9-bus
and 14-bus systems respectively.

Similar to Section IV-A, we evaluated different cases
where the attacker may employ different stationary strategies
(including NE) or the same AMS. The simulation results for
both 9-bus and 14-bus systems share similar patterns with
the results for the 1-generator 4-bus distribution system in
Section IV-A. We omit the unnecessary detailed results to save
space and summarize the main results as follows.

• the AMS defender can achieve the same average payoff as
NE strategy when the opponent adopts the corresponding
NE strategy to attack;

• the AMS defender can achieve statistically significant
higher average payoff than NE strategy when the oppo-
nent adopts non-NE strategies after convergence.

The average convergence times in rounds for both sys-
tems are listed in Table II. We also list the results for the
1-generator 4-bus distribution system in previous section again
for comparison purpose. From Table II, we can see that there is
no statistically significant difference among the average con-
vergence times for these three distribution systems. This is
expected since the convergence time only depends on the size
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of the Markov game modeling the underlying system, which
does not depends on the size and complexity of the system
itself. To some degree, this observation suggests that through
appropriate abstraction, the AMS defending strategy based on
Markov game modeling is not only more effective comparing
with employing NE strategy, but also applicable for complex
distribution system in practice.

V. CONCLUSION

Game-theoretical modeling and analysis is an important
paradigm to handle cyber security in smart-grid systems. The
conventional approach of adopting the Nash equilibrium solu-
tion concept from game theory as the defending strategy might
not be an optimal choice, due to a number of assumptions that
may not be valid in practice, especially when a system is as
complex as a smart grid. To this end, we proposed a novel
adaptive strategy called AMS, which is theoretically proved
to be rational and convergent. We performed extensive exper-
imental evaluation on one important class of cyber attacks
on power distribution systems—false voltage injection attack,
and showed AMS’s superior performance compared with the
conventional NE strategy under a number of testbed systems.

As future work, we intend to study the applicability and
effectiveness of AMS on other types of cyber attacks in smart-
grid systems, and investigate more efficient techniques for
further reduce the computational complexity of AMS to better
suit larger scale smart-gird systems and cyber-physical sys-
tems in general. Besides, we assume that the transmission
channel is perfect and It would be interesting to take into
consideration the transmission noise as future work. Finally,
another interesting direction to explore is considering the case
of multiple attackers, who can launch either individual or
coordinated attack simultaneously. It is worthwhile exploring
how the AMS can be applied or extended for effectively han-
dling these more complicated attacking scenarios or different
application domains (e.g., cloud computing domain [13]).
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